Approximate k-nearest neighbour based spatial clustering using k-d tree
نویسنده
چکیده
Different spatial objects that vary in their characteristics, such as molecular biology and geography, are presented in spatial areas. Methods to organize, manage, and maintain those objects in a structured manner are required. Data mining raised different techniques to overcome these requirements. There are many major tasks of data mining, but the mostly used task is clustering. Data set within the same cluster share common features that give each cluster its characteristics. In this paper, an implementation of Approximate kNN-based spatial clustering algorithm using the K-d tree is proposed. The major contribution achieved by this research is the use of the k-d tree data structure for spatial clustering, and comparing its performance to the brute-force approach. The results of the work performed in this paper revealed better performance using the k-d tree, compared to the traditional brute-force approach.
منابع مشابه
The Area Code Tree for Approximate Nearest Neighbour Search in Dense Point Sets
In this paper, we present an evaluation of nearest neighbour searching using the Area Code tree. The Area Code tree is a trie-type structure that organizes area code representations of each point of interest (POI) in a data set. This data structure provides a fast method for locating an actual or approximate nearest neighbour POI for a query point. We first summarize the area code generation, i...
متن کاملSome improvements on NN based classifiers in metric spaces
The nearest neighbour (NN) and k-nearest neighbour (k-NN) classification rules have been widely used in Pattern Recognition due to its simplicity and good behaviour. Exhaustive nearest neighbour search may become unpractical when facing large training sets, high dimensional data or expensive dissimilarity measures (distances). During the last years a lot of fast NN search algorithms have been d...
متن کاملkNNVWC: An Efficient k-Nearest Neighbors Approach Based on Various-Widths Clustering
The approximate k-NN search algorithms are well-known for their high concert in high dimensional data. The locality-sensitive hashing (LSH) method, that uses a number of hash functions, is one of the most fascinating hash-based approaches. The k-nearest neighbour approaches based Various-Widths Clustering (kNNVWC) has been widely used as a prevailing non-parametric technique in many scientific ...
متن کاملExtensions of the k Nearest Neighbour Methods for Classification Problems
The k Nearest Neighbour (kNN) method is a widely used technique which has found several applications in clustering and classification. In this paper, we focus on classification problems and we propose modifications of the nearest neighbour method that exploit information from the structure of a dataset. The results of our experiments using datasets from the UCI repository demonstrate that the c...
متن کاملA Replacement for Voronoi Diagrams of Near Linear Size
A compressed quad tree based replacement for approximate voronoi diagrams with near linear complexity using hierarchial clustering and prioritized point location among balls and with applications for improved approximate nearest neighbour search using point location among equal balls, fat triangulations of proximity diagrams in two and higher dimensions and for fast approximate proximity search.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1303.1951 شماره
صفحات -
تاریخ انتشار 2013